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Tarantella [https://github.com/cc-hpc-itwm/tarantella]
is an open-source, distributed Deep Learning framework built on top of TensorFlow 2,
providing scalable Deep Neural Network training on CPU and GPU compute clusters.

Tarantella is easy-to-use, allows to re-use existing TensorFlow 2/Keras models,
and does not require any knowledge of parallel computing.
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Why Tarantella?

Tarantella is an open-source Deep Learning framework that focuses on providing fast, scalable and
efficient training of Deep Neural Networks (DNNs) on High Performance Computing (HPC) clusters.


Goals

Tarantella is designed to meet the following goals:

Tarantella...

  1. ...provides strong scalability
  2. ...is easy to use
  3. ...follows a synchronous training scheme
  4. ...integrates well with existing models
  5. ...provides support for GPU and CPU systems





Tarantella provides close to linear speed-up for the training of common Deep Learning architectures,
thus considerably reducing the required time-to-accuracy in many Deep Learning workflows.
To make this capability accessible to as many users as possible, Tarantella’s interface
is designed such that its use does not require any expertise in HPC or parallel computing.

To allow integrating Tarantella into any TensorFlow-based Deep Learning workflow,
we put special emphasis on strictly following the synchronous optimization scheme
used to train DNNs. This guarantees that results obtained in serial execution can be
reproduced when using distributed training
(cf. however these guidelines),
so that computation can be scaled up at any point in time without losing reproducibility
of the results.

Furthermore, we made sure that existing TensorFlow 2/Keras
models can be made ready for distributed training with minimal effort
(follow the Quick Start guide to learn more).
Tarantella supports distributed training on GPU and pure CPU clusters,
independently of the hardware vendors.




Performance Results

To investigate the scalability of Tarantella distributed training with respect to the
number of devices used, we performed several experiments across multiple machines and
models used in the fields of computer vision and natural language processing.

We show below some of the results we obtained when training two state-of-the-art models
in parallel with Tarantella on two types of machines: the
HPC-DA [https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/HPCDA] cluster
of the Technical University of Dresden [https://tu-dresden.de]
is a machine designed for data science workloads, equipped with 6 GPUs per node, while
SuperMUC-NG [https://doku.lrz.de/display/PUBLIC/SuperMUC-NG] from the
Leibniz Supercomputing Centre [https://www.lrz.de/english/] is
a typical HPC machine suitable for CPU-intensive simulations.
The hardware details of the two machines used in our experiments are shown below.







	Cluster

	Hardware specifications per node





	HPC-DA

	
	6 x NVIDIA VOLTA V100 GPU with 32GB HBM2


	2 x IBM Power9 CPU (22 cores @2.80 GHz)


	NVLINK bandwidth 150 GB/s between GPUs and host


	2 x 100 Gbit/s Infiniband interconnect between nodes







	SuperMUC-NG

	
	2 x Intel Skylake Xeon Platinum 8174 CPU (48 cores @3.10 GHz)


	100 Gbit/s OmniPath network










First we look at the speedups that Tarantella can achieve when scaling
up the number of devices for the ResNet-50 model trained with the ImageNet dataset.
ResNet-50 is one of the most studied deep neural networks for computer vision tasks,
featuring over 23 million trainable parameters.

More specifically, Figure 1 illustrates the runtime per epoch on the HPC-DA
cluster, when using up to 96 GPUs. Figure 2 showcases the same experiment performed
on CPUs on the SuperMUC-NG machine, showing that training ResNet-50 distributedly
scales on up to 256 processes.
Compared to the baseline single-device runtime of the ResNet-50 model using
TensorFlow 2.2, Tarantella succeeds in training the model 62x faster on the
CPU cluster and 57x faster on the GPUs.







	
[image: _images/resnet50_epoch_runtimes_bs64_cpu.png]
Figure 1. Training Resnet-50 on CPU nodes




	
[image: _images/resnet50_epoch_runtimes_bs64_gpu.png]
Figure 2. Training Resnet-50 on GPUs









The Transformer is another widely-popular model that originated in the field of
natural language processing (NLP).
With more than 200 million parameters, training the transformer (big) model
heavily relies on data paralellism to achieve reasonable training times.
We show that Tarantella distributed training also scales when using the Transformer
for a translation task trained on the WMT14 English-German Translation dataset.

Figure 3 gives an insight of the time savings that Tarantella-based training can
attain on a GPU machine such as the HPC-DA cluster, reaching a 34x speedup
for one epoch on 96 devices.


[image: Transformer on GPUs]
Figure 3. Training the Transformer (big) on GPUs



To find out more about training such models with Tarantella, take a look at our
tutorials.







            

          

      

      

    

  

    
      
          
            
  
Distributed Data Parallel Training

The following section explains the parallelization strategy Tarantella uses to
provide distributed training. A full understanding thereof is, however, not required
to be able to use the software. Please note the points to consider
to achieve best performance and reproducibility.


The general idea

In order to parallelize the training of DNNs, different, complementary strategies are available.
The conceptually simplest and most efficient one is called data parallelism. This strategy
is already in use when deploying batched optimizers, such as stochastic gradient descent (SGD)
or ADAM. In this case, input samples are grouped together in so-called mini-batches and
are processed in parallel.




Distribution of mini-batches

Tarantella extends this scheme by splitting each mini-batch into a number of micro-batches,
which are then executed on different devices (e.g., GPUs).
In order to do this, the DNN is replicated on each device,
which then processes part of the data independently of the other devices.
During the backpropagation pass, partial results need to be accumulated via a so-called
allreduce [https://en.wikipedia.org/wiki/Collective_operation#All-Reduce_%5B5%5D]
collective operation.




Overlapping communication with computation

Tarantella implements this communication scheme using the
Global Address Space Programming Interface (GASPI) [https://en.wikipedia.org/wiki/Global_Address_Space_Programming_Interface].
This allows in particular to overlap the communication needed to execute allreduce operations
with the computation done in the backpropagation part of the DNN training.
This is done by starting allreduce operations as soon as the required local incoming gradients are
available, while continuing with backpropagation calculations at the same time.
The final, accumulated gradients are only expected once the entire backpropagation is completed.
This drastically mitigates the communication overhead introduced by the need to synchronize
the different devices, and leads to higher scalability.




Tensor Fusion

The granularity at which Tarantella executes allreduce operations can be varied from
one allreduce per layer (finest granularity) to one allreduce per iteration (coarsest granularity).
Using coarser granularities, i.e., fusing gradient tensors,
can lead to better bandwidth utilization, thus potentially increasing performance.
Tensor Fusion is set up before the first iteration of training and incurs no additional communication overhead.
Tarantella enables Tensor Fusion by default, but its granularity can be adjusted by the user,
cf. here.




Model initialization and loading

In order to guarantee that all devices have the same copy of the DNN when training is initiated,
the model needs to be communicated from one device to all the others.
This is done in Tarantella via the use of a so-called
broadcast [https://en.wikipedia.org/wiki/Collective_operation#Broadcast_[3]] operation.
This scheme applies both when the weights of a DNN are initialized randomly,
or loaded from a checkpoint.
As Tarantella provides this functionality automatically,
the user does not have to take care of it.






Distributed Datasets

In order to process micro-batches independently on each device and to obtain the same results
as in serial execution, the input data of each mini-batch has to be split and distributed
among all devices.

Tarantella automatically takes care of this through the use of distributed datasets.
The user simply provides Tarantella with a tf.data.Dataset that is batched
with the mini-batch size. Tarantella will then automatically distribute the input data
by sharding the mini-batch into individual micro-batches. Sharding is done at the level
of samples (as opposed to e.g., files) to ensure reproducibility
of serial results.

To guarantee reproducibility, it is also important that shuffling of samples is done
in the same way on all devices. Tarantella does this using either the seed provided
by the user, or a specific default seed. Please refer to the
Quick Start
for more details.




Points to Consider


Global versus local batch size

As explained above, when using data parallelism, there exists a mini-batch size
(in the following also called global batch size or simply batch size)
as well as a micro-batch size (also called local batch size).
The former represents the number of samples that
is averaged over in the loss function of the optimizer, and is equivalent to
the (mini-)batch size used in non-distributed training. The latter is the number
of samples that is processed locally by each of the devices per iteration.


Note

In Tarantella, the user always specifies the global batch size.



Using a strictly synchronous optimization scheme, and by carefully handling the data distribution,
Tarantella guarantees the reproducibility of DNN training results independently of the number of
devices used, as long as all hyperparameters (such as global batch size and learning rate)
are kept constant. 1

However, to achieve best performance for certain DNN operators (Conv2D, Dense, etc.)
it is often advisable to keep the local batch size constant, and scale the global
batch size with the number of devices used. This, in turn, will force you to
adjust other hyperparameters, such as the learning rate, in order to converge
to a comparable test accuracy, as observed for instance in [Shallue].

In practice, the use of a learning rate schedule with initial warm up and
a linear learning rate scaling [Goyal], as it is described
here, often suffices.


Tip

For best performance, scale the batch size with the number of devices used,
and adapt the learning rate schedule.






Batch normalization layers

The issue of global versus local batch size particularly affects the layers
that calculate (and learn) statistics over entire batches.
A well-known example of this type of layer is
batch normalization [https://en.wikipedia.org/wiki/Batch_normalization].


Caution

Tarantella always calculates batch statistics over local batches.



As a consequence, the training results for DNNs with batch-normalization layers
will not be identical when changing the number of devices, even if
the global batch size stays the same.
At the moment, this can be circumvented by using normalization layers that
do not average over entire batches, such as instance normalization
[Ulyanov].

Averaging over local batches instead of global batches should in practice
have only minor influence on the quality of the final test accuracy.
Note however, the extreme case of very small local batch sizes.


Caution

Avoid using BatchNormalization layers when the global batch size
divided by the number of devices used is smaller than 16.



In such cases, the local batches that are used to collect statistics are
too small to obtain meaningful results. This will likely reduce the
benefits of batch normalization, cf. for instance [Yang] and [Uppal].
In this case, please consider increasing the global batch size,
or reducing the number of devices used.




Managing individual devices

Although Tarantella’s user interface abstracts away most of the details of
parallel programming, it is sometimes useful to be able to control
Python code execution at device level. This can be achieved using the
GASPI [https://en.wikipedia.org/wiki/Global_Address_Space_Programming_Interface] concept
of a rank. Details on how to do this can be found in the
advanced topics.
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Footnotes


	1

	This is strictly true, only when all randomness in TensorFlow is
seeded or switched off, as explained in the advanced topics











            

          

      

      

    

  

    
      
          
            
  
Installation

Tarantella needs to be built from source [https://github.com/cc-hpc-itwm/tarantella].
Since Tarantella is built on top of TensorFlow 2 [https://www.tensorflow.org/],
you will require a recent version of it. Additionally, you will need an installation of
the open-source communication library GPI-2 [http://www.gpi-site.com/], which Tarantella uses
to communicate between processes.
Lastly, you will need pybind11 [https://github.com/pybind/pybind11], which is required
for Python and C++ inter-communication.

In the following we will look at the required steps in detail.


Installing dependencies


Compiler and build system

Tarantella can be built using a recent gcc [https://gcc.gnu.org/]
compiler (from version 7.4.0).
You will also need the build tool CMake [https://cmake.org/] (from version 3.8).




Installing GPI-2

Next, you will need to download, compile and install the GPI-2 library.
The currently supported version is v1.4.0, which needs to be built with
position independent flags (-fPIC).

To download the required version, clone the
git repository [https://github.com/cc-hpc-itwm/GPI-2.git]
and checkout the correct tag:

git clone https://github.com/cc-hpc-itwm/GPI-2.git
cd GPI-2
git fetch --tags
git checkout -b v1.4.0 v1.4.0





Now, use autotools [https://www.gnu.org/software/automake/] to configure and compile the code

./autogen.sh
export GPI2_INSTALLATION_PATH=/your/installation/path
CFLAGS="-fPIC" CPPFLAGS="-fPIC" ./configure --with-ethernet --prefix=${GPI2_INSTALLATION_PATH}
make





where ${GPI2_INSTALLATION_PATH} needs to be replaced with the path where you want to install
GPI-2. Note the --with-ethernet option, which will use standard TCP sockets for communication.
This is the correct option for laptops and workstations.

In case you want to use Infiniband, replace the above option with --with-infiniband.
Now you are ready to install GPI-2 with

make install
export PATH=${GPI2_INSTALLATION_PATH}/bin:$PATH
export LD_LIBRARY_PATH=${GPI2_INSTALLATION_PATH}/lib64:$LD_LIBRARY_PATH





where the last two commands make the library visible to your system.
If required, GPI-2 can be removed from the target directory by using make uninstall.




Installing TensorFlow 2

Next you will need to install TensorFlow 2.
Tarantella supports TensorFlow versions 2.0 to 2.2.
Either version can be installed in a conda environment using pip,
as recommended on the TensorFlow website [https://www.tensorflow.org/install].

In order to do that, first install conda [https://docs.conda.io/en/latest/] on your system.
Then, create and activate an environment for Tarantella:

conda create tarantella
conda activate tarantella





Now, you can install the latest supported TensorFlow version with

conda install python=3.7
pip install --upgrade tensorflow==2.2





Tarantella requires at least Python 3.7. Make sure the selected version also matches
the TensorFlow requirements [https://www.tensorflow.org/install].




Installing pybind11

The last dependency you will need to install is
pybind11 [https://pybind11.readthedocs.io/en/stable/index.html],
which is available through pip and conda.
We recommend installing pybind11 via conda:

conda install pybind11 -c conda-forge










SSH key-based authentication

In order to use Tarantella on a cluster, make sure you can ssh between nodes
without password. For details, refer to the FAQ section.
In particular, to test Tarantella on your local machine, make sure
you can ssh to localhost without password.




Building Tarantella from source

With all dependencies installed, we can now download, configure and compile Tarantella.
To download the source code, simply clone the
GitHub repository [https://github.com/cc-hpc-itwm/tarantella.git]:

git clone https://github.com/cc-hpc-itwm/tarantella.git





Next, we need to configure the build system using CMake.
For a standard out-of-source build, we create a separate build folder and run cmake
in it:

cd tarantella
mkdir build && cd build
export TARANTELLA_INSTALLATION_PATH=/your/installation/path
cmake -DCMAKE_INSTALL_PREFIX=${TARANTELLA_INSTALLATION_PATH} ..





Now, we can compile and install Tarantella to TARANTELLA_INSTALLATION_PATH:

make
make install
export PATH=${TARANTELLA_INSTALLATION_PATH}/bin:${PATH}








[Optional] Building and running tests

In order to build Tarantella with tests, you will also need to install
Boost [https://www.boost.org/]
(for C++ tests), and pytest [https://www.pytest.org/] (for Python tests).

To install boost with the required devel-packages, under Ubuntu you can use

sudo apt install libboost-all-dev





while in Fedora you can use

sudo dnf install boost boost-devel





To install pytest you can use pip:

pip install -U pytest





After having installed these libraries, make sure to configure Tarantella with testing switched on:

cmake -DENABLE_TESTING=ON ..





Now you can compile Tarantella and run its tests in the build directory.

make
ctest








[Optional] Building documentation

If you would like to build the documentation [https://tarantella.readthedocs.io/en/latest/]
locally, run the following cmake command

cmake -DCMAKE_INSTALL_PREFIX=${TARANTELLA_INSTALLATION_PATH} -DBUILD_DOCS=ON ..





before compiling.
This requires you to have Sphinx [https://www.sphinx-doc.org/en/master/] installed:

pip install -U sphinx











            

          

      

      

    

  

    
      
          
            
  
Quick Start

This section explains how to get started using Tarantella to distributedly
train an existing TensorFlow 2/Keras model.
First, we will examine what changes have to be made to your code, before we will look into
the execution of your script with tarantella on the command line.
Finally, we will present the features Tarantella currently supports and
what important points need to be taken into account when using Tarantella.


Code example: LeNet-5 on MNIST

After having build and installed Tarantella
we are ready to add distributed training support to an existing TensorFlow 2/Keras model.
We will first illustrate all the necessary steps, using the well-known example of
LeNet-5 on the MNIST dataset. Although this is not necessarily a good use case
to take full advantage of Tarantella’s capabilities, it will allow you to simply
copy-paste the code snippets and try them out, even on your laptop.

Let’s get started!

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	import tensorflow as tf
from tensorflow import keras
import tarantella as tnt

# Skip function implementations for brevity
[...]

# Initialize Tarantella (before doing anything else)
tnt.init()
args = parse_args()
              
# Create Tarantella model
model = tnt.Model(lenet5_model_generator())

# Compile Tarantella model (as with Keras)
model.compile(optimizer = keras.optimizers.SGD(learning_rate=args.learning_rate),
              loss = keras.losses.SparseCategoricalCrossentropy(),
              metrics = [keras.metrics.SparseCategoricalAccuracy()])

# Load MNIST dataset (as with Keras)
shuffle_seed = 42
(x_train, y_train), (x_val, y_val), (x_test, y_test) = \
      mnist_as_np_arrays(args.train_size, args.val_size, args.test_size)

train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(len(x_train), shuffle_seed)
train_dataset = train_dataset.batch(args.batch_size)
train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)

test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_dataset = test_dataset.batch(args.batch_size)

# Train Tarantella model (as with Keras)
model.fit(train_dataset,
          epochs = args.number_epochs,
          verbose = 1)

# Evaluate Tarantella model (as with Keras)
model.evaluate(test_dataset, verbose = 1)







As you can see from the marked lines in the code snippet,
you only need to add 3 lines of code to train LeNet-5 distributedly using Tarantella!
Let us go through the code in some more detail, in order to understand what is going on.

First we need to import the Tarantella library:

import tarantella as tnt





Having done that we need to initialize the library (which will setup the communication infrastructure):

tnt.init()





Note that this should be done before executing any other code. Next, we need to wrap the
keras.Model object, generated by lenet5_model_generator(), into a tnt.Model object:

model = tnt.Model(lenet5_model_generator())





That’s it!

All the necessary steps to distribute training and datasets will now automatically be handled by Tarantella.
In particular, we still run model.compile on the new model to generate a compute graph,
just as we would have done with a typical Keras model.

Next, we load the MNIST data for training and testing, and
create Dataset s from it. Note that we batch the dataset for training.
This will guarantee that Tarantella is able to distribute the data later on in the correct way.
Also note that the batch_size used here, is the same as for the original model,
that is the global batch size.  For details concerning local and global batch sizes have a look
here.

Now we are able to train our model using model.fit, in the same familiar
way used by the standard Keras interface. Note, however, that Tarantella is taking care of proper
distribution of the train_dataset in the background. All the possibilities of how to
feed datasets to Tarantella are explained in more detail below.
Lastly, we can evaluate the final accuracy of our model on the test_dataset using
model.evaluate.

To test and run tarantella in the next section, you can find a full version of the above example
here [https://github.com/cc-hpc-itwm/tarantella/blob/master/docs/source/model.py].




Executing your model with tarantella

Next, let’s execute our model distributedly using tarantella on the command line.
The simplest way to do that is by passing the Python script of the model to tarantella:

tarantella -- model.py





This will execute our model distributedly on a single node, using all the available GPUs.
In case no GPUs can be found, tarantella will executed in serial mode on the CPU,
and an WARNING message will be issued. In case you have GPUs available, but
want to execute tarantella on CPUs nonetheless, you can specify the --no-gpu option.

tarantella --no-gpu -- model.py





We can also set command line parameters for the python script model.py, which have to
succeed the name of the script:

tarantella --no-gpu -- model.py --batch_size=64 --learning_rate=0.01





On a single node, we can also explicitly specify the number of TensorFlow instances
we want to use. This is done with the -n option:

tarantella -n 4 -- model.py --batch_size=64





Here, tarantella would try to execute distributedly on 4 GPUs.
If there are not enough GPUs available, tarantella will print a WARNING
and run 4 instances of TensorFlow on the CPU instead.
If there are no GPUs installed or the --no-gpu option is use,
tarantella will not print a WARNING.

Next, let’s run tarantella on multiple nodes. In order to do this,
we need to provide tarantella with a hostfile that contains
the hostname s of the nodes that we want to use:

$ cat hostfile
name_of_node_1
name_of_node_2





With this hostfile we can run tarantella on multiple nodes:

tarantella --hostfile hostfile -- model.py





In this case, tarantella uses all GPUs it can find.
If no GPUs are available, tarantella will start one TensorFlow instance
per node on the CPUs, and will issue an WARNING message.
Again, this can be disabled by explicitly using the --no-gpu
option.

As before, you can specify the number of GPUs/CPUs used per node
explicitly with the option --n-per-node=<number>:

tarantella --hostfile hostfile --n-per-node=4 --no-gpu -- model.py --batch_size=64





In this example, tarantella would execute 4 instances of TensorFlow on the CPUs
of each node specified in hostfile.


Caution

tarantella requires all the names in the hostfile be unique,
and all nodes be homogeneous (number and type of CPUs and GPUs).



In addition, tarantella can be run with different levels of logging output.
The log-levels that are available are INFO, WARNING, DEBUG and ERROR,
and can be set with --log-level:

tarantella --hostfile hostfile --log-level=INFO -- model.py





By default, tarantella will log on the master rank only.
This can be changed by using the --log-on-all-devices option which will print
log messages for each rank individually.

Similarly, by default tarantella will print outputs from functions like fit,
evaluate and predict, as well as callbacks only on the master rank.
Sometimes, it might be useful to print outputs from all devices (e.g., for debugging),
which can be switched on with the --output-on-all-devices option.

tarantella uses GPI-2’s gaspi_run internally, taking care of export ing
environment variables, and generating an execution script from the user inputs.
Details of this process can be monitored using the --dry-run option.

Lastly, you can overwrite the Tensor Fusion threshold tarantella uses
with --fusion-threshold FUSION_THRESHOLD_KB
(cf. here and here),
and set and number of environment variables, most notably
TNT_TENSORBOARD_ON_ALL_DEVICES, as explained
here.




Save and load Tarantella models

Storing and loading your trained Tarantella.Model is very simple.

Tarantella supports all the different ways, in which you can load and store a keras.Model
(for a guide look for instance here [https://www.tensorflow.org/guide/keras/save_and_serialize]).
In particular, you can:


	save the whole model (including the architecture, the weights and the state of the optimizer)


	save the model’s architecture/configuration only


	save the model’s weights only





Whole-model saving and loading

Saving the entire model including the architecture, weights and optimizer can be done via

model = ...  # get `tnt.Model`
model.save('path/to/location')





Alternatively, you could use tnt.models.save_model('path/to/location'), which works
on both keras.Model s and tnt.Model s.

You can than load your model back using

import tarantella as tnt
model = tnt.models.load_model('path/to/location')





which will return an instance of tnt.Model.


Caution

At the moment, you will need to re-compile your model after loading.



This is again done with

model.compile(optimizer = keras.optimizers.SGD(learning_rate=args.learning_rate),
              loss = keras.losses.SparseCategoricalCrossentropy(),
              metrics = [keras.metrics.SparseCategoricalAccuracy()])





or similar.




Architecture saving and loading

If you only want to save the configuration (that is the architecture) of your model
(in memory), you can use one of the following functions:


	tnt.Model.get_config


	tnt.Model.to_json


	tnt.Model.to_yaml




The architecture without its original weights and optimizer can then be restored
using:


	tnt.models.model_from_config / tnt.Model.from_config


	tnt.models.model_from_json


	tnt.models.model_from_yaml




respectively.
Here is an example:

import tarantella as tnt
model = ...  # get `tnt.Model`
config = model.get_config()
new_model = tnt.models.model_from_config(config)





The same can be achieved through cloning:

import tarantella as tnt
model = ...  # get `tnt.Model`
new_model = tnt.models.clone_model(model)








Weights saving and loading

Storing and loading the weights of a model to/from memory can be done
using the functions tnt.Model.get_weights and tnt.Model.set_weights,
respectively. Saving and loading weights to/from disk is done
using the functions tnt.Model.save_weights and tnt.Model.load_weights,
respectively.

Here is an example how this can be used to restore a model:

import tarantella as tnt
model = ...  # get `tnt.Model`
config = model.get_config()
weights = model.get_weights()

# initialize a new model with original model's weights
new_model = tnt.models.model_from_config(config)
new_model.set_weights(weights)








Checkpointing via callbacks

Apart from saving and loading models manually, Tarantella also supports checkpointing
via Keras’ ModelCheckpoint callback, as it is described for instance
here [https://www.tensorflow.org/guide/keras/train_and_evaluate#checkpointing_models].

import tensorflow as tf
import tarantella as tnt

model = ...  # get `tnt.Model`

checkpoint_path = 'path/to/checkpoint/location'
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
  filepath=checkpoint_path, monitor='val_acc', verbose=1, save_best_only=False,
  save_weights_only=False, mode='auto', save_freq='epoch', options=None)

model.fit(train_dataset,
          validation_data = val_dataset,
          epochs = 2,
          callbacks = [model_checkpoint_callback])






Note

All saving to the filesystem (including tnt.Model.save and tnt.Model.save_weights)
by Tarantella will only be done on the master rank.



This is the default and will yield correct behavior when you are using a distributed filesystem.
If you wish to explicitly save on all devices you can pass tnt_save_all_devices = True
to tnt.Model.save, tnt.Model.save_weights and tnt.models.save_model.






Using distributed datasets

This section explains what needs to be done in order to use Tarantella’s distributed datasets correctly.

The recommended way in which to provide your dataset to Tarantella is by passing a
batched tf.data.Dataset to tnt.Model.fit.
In order to do this, create a Dataset and apply the batch
transformation [https://www.tensorflow.org/api_docs/python/tf/data/Dataset#batch]
using the (global) batch size to it. However, do not provide a value to batch_size
in tnt.Model.fit, which would lead to double batching, and thus modified shapes
for the input data.

Tarantella also supports batched and unbatched Dataset s in tnt.Model.fit
when setting the tnt_micro_batch_size argument. This can be useful to obtain
maximal performance in multi-node execution, as explained
here. Keep in mind however, that Tarantella still expects
the Dataset to be batched with the global batch size, and that the micro-batch
size has to be consistent with the global batch size. 1
This is why, it is recommended to use an unbatched Dataset when setting
a tnt_micro_batch_size explicitly.

Tarantella does not support any other way to feed data to fit at the moment.
In particular, Numpy arrays, TensorFlow tensors and generators are not supported.

Tarantella’s automatic data distribution can be switched off by passing
tnt_distribute_dataset=False in tnt.Model.fit, in which case Tarantella
will issue an INFO message.
If a validation dataset is passed to tnt.Model.fit, it should also be batched
with the global batch size. You can similarly switch off its automatic
micro-batching mechanism by setting tnt_distribute_validation_dataset=False.

There are a few important points when using distributed datasets in Tarantella:


Note

Batch size must be a multiple of the number of devices used.



This issue will be fixed in the next release.


Note

The last incomplete batch is always dropped.



We recommend to use drop_remainder=True when generating a Dataset.
If drop_remainder is set to False, Tarantella will ignore it
and issue a WARNING message. This behavior will be fixed in the next release.


Note

When using shuffle without a seed, Tarantella will use a fixed default seed.



This guarantees that the input data is shuffled the same way on all devices,
when no seed is given, which is necessary for consistency.
However, when a random seed is provided by the user, Tarantella will use that one instead.




Callbacks

At the moment, Tarantella fully supports 3 of the
Keras callbacks [https://www.tensorflow.org/api_docs/python/tf/keras/callbacks]:


	tf.keras.callbacks.LearningRateScheduler


	tf.keras.callbacks.ModelCheckpoint


	tf.keras.callbacks.TensorBoard




The LearningRateScheduler takes a schedule which will change the learning rate
on each of the devices used (for detailed explanation, cf.
here [https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/LearningRateScheduler]
and
here [https://www.tensorflow.org/guide/keras/train_and_evaluate#using_learning_rate_schedules]
).
If verbose=1 is set, Tarantella will only print on one device by default.
This behavior can be changed by passing --output-on-all-devices to tarantella.

ModelCheckpoint can be used to automatically checkpoint the state of the model
during training. For an example look here,
and into the
Keras documentation [https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ModelCheckpoint].

The TensorBoard callback can be used to collect training information for visualization
in TensorBoard [https://www.tensorflow.org/tensorboard]. By default, Tarantella
will only collect (device local) information on one device. If you want to collect
the local information on all devices use the environment variable TNT_TENSORBOARD_ON_ALL_DEVICES:

TNT_TENSORBOARD_ON_ALL_DEVICES=true tarantella -- model.py






Note

At the moment, all of the other Keras callbacks will be executed on all devices with
local information only.



For instance, the BaseLogger callback will be executed on each and every rank,
and will log the acculumated metric averages for the local (micro-batch) information.




Important points

There is a number of points you should be aware of when using Tarantella.


Note

tnt.init() needs to be called after import tarantella as tnt, but before
any other statement.



This will make sure the GPI-2 communication infrastructure is correctly initialized.


Note

Tarantella does not support custom training loops.



Instead of using custom training loops, please use Model.fit(...).


Note

Tarantella supports all
TensorFlow optimizers [https://www.tensorflow.org/api_docs/python/tf/keras/optimizers]
with the exception of tf.keras.optimizers.Ftrl.



Since the Ftrl optimizer does not use batches, it is not supported in Tarantella.

Footnotes


	1

	That is, the global batch size must equal the micro batch size times
the number of devices used.











            

          

      

      

    

  

    
      
          
            
  
Tutorials

This section delves into more advanced usage of Tarantella with the help of
state-of-the-art models for two widely-used applications in Deep Learning:


	Image classification: ResNet-50


	Machine translation: Transformer




The models shown here are adapted from the
TensorFlow Model Garden [https://github.com/tensorflow/models/tree/master/official].
While the model implementations and hyperparameters are unchanged to preserve
compatibility with the TensorFlow official models, we provide simplified training
schemes that allow for a seamless transition from basic serial training to distributed
data parallelism using Tarantella.


Prerequisites

The tutorial models can be downloaded from the
Tnt Models repository [https://github.com/cc-hpc-itwm/tarantella_models].

cd /your/models/path
git clone https://github.com/cc-hpc-itwm/tarantella_models

cd tarantella_models/src
export TNT_MODELS_PATH=`pwd`





To use these models, install the the following dependencies:


	TensorFlow 2.2.1


	Tarantella 0.6.0




For a step-by-step installation, follow the Installation guide.
In the following we will assume that TensorFlow was installed in a conda
environment called tarantella.

Now we can install the final dependency,
TensorFlow official Model Garden [https://github.com/tensorflow/models]:

conda activate tarantella
pip install tf-models-official==2.2.1








ResNet-50

Deep Residual Networks (ResNets) represented a breakthrough in the field of
computer vision, enabling deeper and more complex deep convolutional networks.
Introduced in [He], ResNet-50 has become a standard model for image classification
tasks, and has been shown to scale to very large number of nodes in data parallel
training [Goyal].


Run Resnet-50 with Tarantella

Before running the model, we need to add it to the existing PYTHONPATH.

export PYTHONPATH=${TNT_MODELS_PATH}/models/resnet:${PYTHONPATH}





Furthermore, the ImageNet dataset needs to be installed and available on
all the nodes that we want to use for training.
TensorFlow provides convenience scripts to download datasets, in their datasets
package that is installed as a dependency for the TensorFlow Model Garden.
Install ImageNet to your local machine as described
here [https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/scripts/download_and_prepare.py].

export TNT_DATASETS_PATH=/path/to/downloaded/datasets

python -m tensorflow_datasets.scripts.download_and_prepare \
--datasets=imagenet2012 --data_dir=${TNT_DATASETS_PATH}





Let’s assume we have access to two nodes (saved in hostfile) equipped with 4 GPUs each.
We can now simply run the ResNet-50 as follows:

tarantella --hostfile ./hostfile --devices-per-node 4 \
-- ${TNT_MODELS_PATH}/models/resnet/resnet50_tnt.py --data_dir=${TNT_DATASETS_PATH} \
                                                    --batch_size=512 \
                                                    --train_epochs=90 \
                                                    --epochs_between_evals=10





The above command will train a ResNet-50 models on the 8 devices available in parallel
for 90 epochs, as suggested in [Goyal] to achieve convergence.
The --epochs_between_evals parameter specifies the frequency of evaluations of the
validation dataset performed in between training epochs.

Note the --batch_size parameter, which specifies the global batch size used in training.




Implementation overview

We will now look closer into the implementation of the ResNet-50 training scheme.
The main training steps reside in the models/resnet/resnet50_tnt.py file.

The most important step in enabling data parallelism with Tarantella is
to wrap the Keras model:

model = resnet_model.resnet50(num_classes = imagenet_preprocessing.NUM_CLASSES)
model = tnt.Model(model)





Next, the training procedure can simply be written down as it would be for a
standard, TensorFlow-only model. No further changes are required to train the
model in a distributed manner.

In particular, the ImageNet dataset is loaded and preprocessed as follows:

train_dataset = imagenet_preprocessing.input_fn(is_training = True,
                                                data_dir = flags_obj.data_dir,
                                                batch_size = flags_obj.batch_size,
                                                shuffle_seed = 42,
                                                drop_remainder = True)





The
imagenet_preprocessing.input_fn [https://github.com/cc-hpc-itwm/tarantella_models/blob/master/src/models/resnet/imagenet_preprocessing.py#L20]
function reads the input files in data_dir, loads the training samples, and processes
them into TensorFlow datasets.

The user only needs to pass the global batch_size value, and the Tarantella
framework will ensure that the dataset is properly distributed among devices,
such that:



	each device will process an independent set of samples


	each device will group the samples into micro batches, where the micro-batch
size will be computed as batch_size / num_devices


	each device will apply the same set of transformations to its imput samples as
specified in the input_fn function.







The advantage of using the automatic dataset distribution mechanism of Tarantella
is that users can reason about their I/O pipeline without taking care of the details
about how to distribute it.
Note however, that the batch size has to be a multiple of the number of ranks, so
that it can be efficiently divided into micro-batches.

Before starting the training, the model is compiled using a standard Keras optimizer
and loss.

model.compile(optimizer = optimizer,
              loss = 'sparse_categorical_crossentropy',
              metrics = (['sparse_categorical_accuracy']))





We provide flags to enable the most commonly used Keras callbacks, such as
the TensorBoard profiler, which can simply be passed to the fit function
of the Tarantella model.

callbacks.append(tf.keras.callbacks.TensorBoard(log_dir = flags_obj.model_dir,
                                                profile_batch = 2))





If model checkpointing is required, it can be enabled through the ModelCheckpoint
callback as usual (cf. checkpointing models with Tarantella).

callbacks.append(tf.keras.callbacks.ModelCheckpoint(ckpt_full_path, save_weights_only=True))





There is no need for any further changes to proceed with distributed training:

history = model.fit(train_dataset,
                    epochs = flags_obj.train_epochs,
                    callbacks = callbacks,
                    validation_data = validation_dataset,
                    validation_freq = flags_obj.epochs_between_evals,
                    verbose = 1)








Advanced topics


Scaling the batch size

Increasing the batch size provides a simple means to achieve significant training
time speed-ups, as it leads to perfect scaling with respect to the steps required
to achieve the target accuracy (up to some dataset- and model- dependent critical
size, after which further increasing the batch size only leads to diminishing returns)
[Shallue].

This observation, together with the fact that small local batch sizes decrease the
efficiency of DNN operators, represent the basis for a standard technique in data
parallelism: using a fixed micro batch size and scaling the global batch size
with the number of devices.

Tarantella provides multiple mechanisms to set the batch size, as presented in the
Quick Start guide.

In the case of ResNet-50, we specify the global batch size as a command line
parameter, and let the framework divide the dataset into microbatches.




Scaling the learning rate

To be able to reach the same target accuracy when scaling the global batch size up,
other hyperparameters need to be carefully tuned [Shallue].
In particular, adjusting the learning rate is essential for achieving convergence
at large batch sizes. [Goyal] proposes to scale the
learning rate up linearly with the batch size (and thus with the number of devices).

The scaled-up learning rate is set up at the begining of training, after which the
learning rate evolves over the training steps based on a so-called
learning rate schedule.

In our ResNet-50 example, we use the
PiecewiseConstantDecayWithWarmup [https://github.com/cc-hpc-itwm/tarantella_models/blob/master/src/models/resnet/resnet50_tnt.py#L20]
schedule provided by the TensorFlow Models implementation, which is similar to the schedule
introduced by [Goyal].
When training starts, the learning rate is initialized to
a large value that allows to explore more of the search space. The learning rate will
then monotonically decay the closer the algorithm gets to convergence.

The initial learning rate here is scaled up by a factor computed as:

self.rescaled_lr = BASE_LEARNING_RATE * batch_size / base_lr_batch_size





Here batch_size is the global batch size and base_lr_batch_size is the predefined batch size
(set to 256) that corresponds to single-device training. This effectively scales the
BASE_LEARNING_RATE linearly with the number of devices used.




Learning rate warm-up

Whereas scaling up the learning rate with the batch size is necessary, a large learning
rate might degrade the stability of the optimization algorithm, especially in early training.
A technique to mitigate this limitation is to warm-up the learning rate during the first
epochs, particularly when using large batches [Goyal].

In our ResNet-50 example, the PiecewiseConstantDecayWithWarmup schedule
starts with a small value for the learning rate, which then increases at every step
(i.e., iteration), for a number of initial
warmup_steps [https://github.com/cc-hpc-itwm/tarantella_models/blob/master/src/models/resnet/common.py#L30].

The warmup_steps value defaults to the number of iterations of the first five epochs,
matching the schedule proposed by [Goyal].
After the warmup_steps are done, the learning rate value should reach the scaled initial
learning rate introduced above.

def warmup_lr(step):
  return self.rescaled_lr * (
      tf.cast(step, tf.float32) / tf.cast(self.warmup_steps, tf.float32))












Transformers

The Transformer is a Deep Neural Network widely used in the field of natural language
processing (NLP), in particular for tasks such as machine translation.
It was first proposed by [Vaswani].


Run the Transformer with Tarantella

The Tranformer training scheme can be found
here [https://github.com/cc-hpc-itwm/tarantella_models/blob/master/src/models/transformer/transformer_tnt.py],
and has to be added to
the existing PYTHONPATH:

export PYTHONPATH=${TNT_MODELS_PATH}/models/transformer:${PYTHONPATH}





We will follow the training procedure presented in [Vaswani], where the authors
show results for training the big variant of the Transformer model on
a machine translation dataset called
WMT14 [http://www.statmt.org/wmt14/translation-task.html].

To install the dataset, we will use the Tensorflow datasets package, which
should have been already installed in your conda environment as a
dependency for the TensorFlow Model Garden, and download the English-German
dataset to match the results by [Vaswani].
Detailed instructions on how to obtain the dataset are provided in the
TensorFlow documentation [https://www.tensorflow.org/datasets/catalog/wmt14_translate].

Now we can start training.
Once again, let’s assume we have access to two nodes (specified in hostfile)
equipped with 4 GPUs each.

export WMT14_PATH=/path/to/the/installed/dataset

tarantella --hostfile ./hostfile --devices-per-node 4 \
-- ${TNT_MODELS_PATH}/models/transformer/transformer_tnt.py \
                     --data_dir=${WMT14_PATH} \
                     --vocab_file=${WMT14_PATH}/vocab.ende.32768 \
                     --bleu_ref=${WMT14_PATH}/newstest2014.de \
                     --bleu_source=${WMT14_PATH}/newstest2014.en \
                     --param_set=big \
                     --train_epochs=30 \
                     --epochs_between_evals=30 \
                     --batch_size=32736





The above command will select the big model implementation and train it
on the 8 specified devices in a distributed fashion.
To reach the target accuracy, [Vaswani] specifies that the model needs to be
trained for 30 epochs.

The Transformer requires access to a vocabulary file, which contains all the
tokens derived from the dataset. This is provided as the vocab_file parameter
and is part of the pre-processed dataset.

After training, one round of evaluation is conducted using the newstest2014
dataset to translate English sentences into German. The frequency of evaluation
rounds can be changed by updating the epochs_between_evals parameter.




Implementation overview

The Transformer model itself is implemented and imported from the
TensorFlow Model Garden [https://github.com/tensorflow/models/tree/master/official/nlp/transformer].
The training procedure and dataset loading and pre-processing do not require
extensive changes to work with Tarantella. However, we provide a simplified
version to highlight the usage of Tarantella with Keras training loops.

Thus, the Keras transformer model is created in
TransformerTntTask class [https://github.com/cc-hpc-itwm/tarantella_models/blob/master/src/models/transformer/transformer_tnt.py#L80].
Two different versions of the model are used, one for training (wrapped into
a Tarantella model), and one for inference (serial Keras model).

self.train_model = create_model(internal_model, self.params, is_train = True)
# Enable distributed training
self.train_model = tnt.Model(self.train_model)

# The inference model is wrapped as a different Keras model that does not use labels
self.predict_model = create_model(internal_model, self.params, is_train = False)





To illustrate alternatives in the use of Tarantella, we distribute the data
manually here, data_pipeline.py [https://github.com/cc-hpc-itwm/tarantella_models/blob/master/src/models/transformer/data_pipeline.py]
file, as explained in the
manually-distributed datasets section.
Alternatively, automatic dataset distribution could be used, as explained in the
Quick Start.

To be able to manually split the dataset across ranks, we need access to rank IDs
and the total number of ranks, which are then passed to the IO pipeline [https://github.com/cc-hpc-itwm/tarantella_models/blob/master/src/models/transformer/transformer_tnt.py#L134].

The Advanced Topics section explains the API Tarantella
exposes to access ranks.

train_ds = data_pipeline.train_input_fn(self.params,
                                        shuffle_seed = 42,
                                        num_ranks = tnt.get_size(),
                                        rank = tnt.get_rank())





Here, the data_pipeline.train_input_fn reads in the dataset and applies a series
of transformations to convert it into a batched set of sentences.

Next, the user can also create callbacks, which can then be simply passed on to
the training function.

callbacks.append(tf.keras.callbacks.TensorBoard(log_dir=self.flags_obj.model_dir))





Finally, we can call model.fit to start distributed training on all devices:

history = model.fit(train_ds,
                    tnt_distribute_dataset = False,
                    epochs=self.params["train_epochs"],
                    callbacks=callbacks,
                    verbose=1)





In the following sections we will show how we modify the fit loop to allow for
a customized evaluation of the trained model.




Important points


Customized behavior based on rank

Although all ranks participating in data parallel training use identical replicas
of the same model and make progress in sync, there are cases when certain tasks
should be executed on a specific rank (or group or ranks).
To this end, Tarantella provides a number of functions to identify the rank ID
and allow users to add customized behavior based on rank, as decribed in this
section.

In the case of the Transformer model, we want to use the rank information to
perform several tasks:


	print logging messages




if tnt.is_master_rank():
  logging.info("Start train")






	distribute datasets manually among participating devices


	execute other models, such as a modified, serial version of the Tarantella model for inference


	enable certain callbacks only on one rank (e.g., profiling callbacks)




if tnt.is_master_rank():
  if self.flags_obj.enable_time_history:
    time_callback = keras_utils.TimeHistory(self.params["batch_size"],
                                            self.params["num_sentences"],
                                            logdir = None)
    callbacks.append(time_callback)





Such callbacks only collect local data corresponding to the specific rank where they are executed.
In this example, the TimeHistory callback will measure timings only on the master_rank. While
iteration and epoch runtimes should be the same on all ranks (as all ranks train in sync), other
metrics such as accuracy will only be computed based on the local data available to the rank.




Using manually-distributed datasets

Typically, it is the task of the framework to automatically handle batched
datasets, such that each rank only processes its share of the data, as explained in
the Quick Start guide.

However, there are complex scenarios when the user might prefer to manually build the
dataset slices corresponding to each rank.
Tarantella allows the user to disable the automatic distribution mechanism
by passing tnt_distribute_dataset = False to the model.fit function.

This is how it is done in the case of the Transformer:

history = self.train_model.fit(train_ds,
                               callbacks = callbacks,
                               tnt_distribute_dataset = False,
                               initial_epoch = epoch,
                               epochs = epoch + min(self.params["epochs_between_evals"],
                                                   self.params["train_epochs"]-epoch),
                               verbose = 2)





Also note the use of initial_epoch and epochs. This combination of parameters
is necessary to allow evaluation rounds in between training epochs, when a validation
dataset cannot be simply passed to model.fit.
In particular, our transformer implementation features a different model for
inference, as described below.

Now that automatic distribution is disabled, let us take a look at how to split
the dataset manually among devices.
The input data processing is implemented in
data_pipeline.py [https://github.com/cc-hpc-itwm/tarantella_models/blob/master/src/models/transformer/data_pipeline.py].

In the case of the Transformer model, the global batch_size stands for the total
number of input tokens processed in a single iteration.
However, as the training is performed in (fixed-sized) sentences, our global
batch_size used for training will be in fact the number of sentences comprised
in such a batch.

Furthermore, we need to divide the number of sentences across ranks, such that
each rank can work on a separated shard of micro_batch_size sentences.
Finally, the dataset itself needs to be batched using the micro_batch_size and
each device instructed to select its own shard:

number_batch_sentences = batch_size // max_length

micro_batch_size = number_batch_sentences // num_ranks

# Batch the sentences and select only the shard (subset)
# corresponding to the current rank
dataset = dataset.padded_batch(micro_batch_size,
                              ([max_length], [max_length]),
                              drop_remainder=True)
dataset = dataset.shard(num_ranks, rank)








Mixing Keras and Tarantella models

An essential aspect of the Transformer model is that it operates on slightly different
model versions during training and inference.
While in training the model works on encoded tokens, inference requires translation
to and from plain text. Thus, the model needs to use modified input and output layers
for each of these tasks.

To illustrate the way a Tarantella model can work alongside a typical Keras model, we
only execute the training phase on the Transformer within a (distributed) Tarantella
model.

Take a look at the
model creation function [https://github.com/cc-hpc-itwm/tarantella_models/blob/master/src/models/transformer/transformer_tnt.py#L53].
It builds two different Keras models depending on whether training is enabled or not,
both of them based on the same internal model (i.e., using the same learned weights).

Now, when initializing our Transformer task, we only wrap one of the models as a tnt.Model:

# Transformer model used both as Tarantella model (in training) and as a serial
# model for inference
internal_model = transformer.Transformer(self.params, name="transformer_v2")

# The train model includes an additional logits layer and a customized loss
self.train_model = create_model(internal_model, self.params, is_train = True)
# Enable distributed training
self.train_model = tnt.Model(self.train_model)

# The inference model is wrapped as a different Keras model that does not use labels
self.predict_model = create_model(internal_model, self.params, is_train = False)





Training can now proceed as usual, by only calling the fit method on our train_model.
We can however design our training loop to stop every epochs_between_evals epochs,
evaluate the training accuracy using the serial predict_model, and then continue
from where it left off.

for epoch in range(0, self.params["train_epochs"], self.params["epochs_between_evals"]):
  # as our dataset is distributed manually, disable the automatic Tarantella distribution
  history = self.train_model.fit(train_ds,
                                 callbacks = callbacks,
                                 tnt_distribute_dataset = False,
                                 initial_epoch = epoch,
                                 epochs = epoch + min(self.params["epochs_between_evals"],
                                                      self.params["train_epochs"]-epoch),
                                 verbose = 2)

  if tnt.is_master_rank():
    eval_stats = self.eval()





The self.eval() method performs the translation on the test dataset using the
standard Keras predict_model.

def eval(self):
  ...
  uncased_score, cased_score = transformer_main.evaluate_and_log_bleu(
                                                self.predict_model,
                                                self.params,
                                                self.flags_obj.bleu_source,
                                                self.flags_obj.bleu_ref,
                                                self.flags_obj.vocab_file)





A validation dataset can be provided in the form of a pair of input files specified
at the command line as  bleu_source and bleu_ref.
If the validation dataset exists, the evaluation method will compute and log the
corresponding BLEU scores (both case-sensitive and case-insensitive) serially.











            

          

      

      

    

  

    
      
          
            
  
Advanced Topics

This guide covers a number of advanced topics, such as
performance, reproducibility and user customization.


GASPI ranks

In order to execute distributed DNN training, Tarantella starts multiple processes
on different devices. These processes will be assigned different IDs by the GASPI
communication library, in order to organize communication and synchronization between
the different devices. These IDs are called ranks. Usually, Tarantella abstracts away
the concept of ranks, in such a way that Tarantella’s user interface is essentially
the same as Keras’ user interface.

However, sometimes it is useful, to execute a specific part of code only on one
or a subgroup of all ranks. In particular, one sometimes wants to execute a code
block on the devices that started tarantella, the so-called master rank.

To access ranks, Tarantella provides the following functions


	tnt.get_rank()


	tnt.get_size()


	tnt.get_master_rank()


	tnt.is_master_rank()




tnt.get_rank() returns the ID of the local rank.
tnt.get_size() returns the total number of ranks.
tnt.get_master_rank() and tnt.is_master_rank() return the ID of the master rank
and a boolean for whether the local rank is the master rank or not, respectively.

Here is a simple example, when using the master rank can be useful to print notifications
only once to stdout:

if tnt.is_master_rank():
  print("Printing from the master rank")





In the same vein, you might want to use ranks to execute callbacks for logging
only on one rank:

history_callback = tf.keras.callbacks.History()
tnt_model.fit(train_dataset,
              callbacks = [history_callback] if tnt.is_master_rank() else [])





Note that callbacks running on a single rank will only have access to local data corresponding
to that rank. For instance, even though the models are identical on all ranks, a logging callback
that displays metrics will only be aware of locally collected metrics, that is, metrics generated
based on the micro-batches that the rank has processed.




Using local batch sizes

As it has been stated in the points to consider, when using
Tarantella the user always specifies the global batch size. This has the advantage that
the optimization process during the training of a DNN, and in particular the loss function do not
depend on the number of devices used during execution.

However, when the number of devices becomes
very large, the (device-local) micro-batch size might become so small, that DNN kernel implementations
are less efficient, resulting in overall performance degradation.
This is why it is in practice often advisable to scale the global batch size with the number of nodes.
This will often lead to linear speedups in terms of the time to accuracy when increasing
the number of devices used, at least up to some critical batch size, cf. [Shallue] and [McCandlish].
Changing the batch size of the optimizer will however also imply the need to adapt the learning rate
schedule.

For details, cf. for instance the ResNet-50 tutorial.

If you decide to scale the batch size with the number of nodes, Tarantella provides
two different ways to achieve this easily. The first option is to multiply the local batch size
(for instance passed via a command-line parameter) with the number of devices used,
batch your dataset with it, and call fit on it:

micro_batch_size = args.micro_batch_size
batch_size = tnt.get_size() * micro_batch_size
train_dataset = train_dataset.batch(batch_size)
tnt_model.fit(train_dataset)





As a second option you can also pass the local batch size directly to the tnt_micro_batch_size
parameter in fit, and leave your dataset unbatched:

micro_batch_size = args.micro_batch_size
tnt_model.fit(train_dataset,
              tnt_micro_batch_size = micro_batch_size)





This parameter is also available in evaluate and predict. In addition, fit also supports
setting the validation set micro batch size in a similar way with tnt_validation_micro_batch_size.
For more information, please also read using distributed datasets.




Setting Tensor Fusion threshold

Tarantella automatically uses Tensor Fusion with a default
threshold of 32kB. This threshold specifies the minimal size of local buffers in allreduce
communication operations used to accumulate partial gradients during backpropagation.

Note that the threshold value implies a trade-off between the potential to utilize network
bandwidth, and the overlap of computation and communication during backpropagation. The
larger the threshold, the more bandwidth-bound the allreduce algorithm will get, but
the less potential there will be to overlap its execution with kernel computations.
Also note that the ideal threshold value will generally depend on the number of nodes used.

To change the default value, you can pass a threshold value in kB to tarantella:

tarantella --hostfile hostfile --fusion-threshold=<FUSION_THRESHOLD_KB> -- model.py








Reproducibility

Reproducibility is a very important prerequisite to obtain meaningful results in
scientific computing and research. Unfortunately, using stochastic algorithms,
pseudo random generators and having to deal with the pitfalls of floating-point arithmetics,
it is particularly difficult to achieve reproducibility in Deep Learning research.

In order to be able to reproduce results obtained with TensorFlow, when running in
a multi-node/multi-device setting with Tarantella, one needs to meet at least
the following requirements:


	set the random seed with tf.random.set_seed(seed)


	set the environment variable os.environ['TF_DETERMINISTIC_OPS'] = '1'


	set the environment variable os.environ['TF_CUDNN_DETERMINISTIC'] = '1'


	set the random seed when using layers such as keras.layers.Dropout


	set the shuffle seeds when using tf.data.Dataset with shuffle(seed=seed) and list_files(seed=seed)


	set the deterministic parameter to True in Dataset transformations such as interleave and map


	make sure the number of samples in your datasets equal a multiple of batch_size




Additionally, Python-specific random generators might need to be seeded, in particular:
* random.seed(seed)
* numpy.random.seed(seed)
* os.environ['PYTHONHASHSEED'] = str(seed)

For more details, take a look at a more in-depth study of
non-determinism sources in TensorFlow [https://github.com/NVIDIA/framework-determinism].







            

          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions (FAQ)

This is a list of frequently asked questions about Tarantella.
Please feel free to suggest new ones!


Question

How can I ssh to localhost without password?



In order to run Tarantella programs, you will need to be able to ssh to localhost without password.
In order to do that generate ssh keys first:

cd ~/.ssh
ssh-keygen





Make sure not to overwrite existing keys.
When asked for a passphrase, Enter passphrase (empty for no passphrase):, simply leave empty
and return with enter.
Also take specific care to set correct user rights on all files in .ssh,
cf. for instance here [https://superuser.com/questions/215504/permissions-on-private-key-in-ssh-folder].
Next, append the public key to the authorized_keys file:

cat id_rsa.pub >> authorized_keys





Now, install and start an ssh server, e.g., openssh-server on Fedora.
More details can be found for instance
here [https://linuxconfig.org/how-to-install-start-and-connect-to-ssh-server-on-fedora-linux].


Question

I get an execution error GPI library initialization incorrect environment vars when
trying to run my script. What shall I do?



Most likely you are running your program with python my_script.py or ./my_script.py.
Please make sure to execute your code with tarantella my_script.py instead.


Question

I get an execution error GPI library initialization general error. What shall I do?



This error occurs when the GASPI library tries to connect to a previously used socket, that is not yet released.
Try to re-run your code after a short while so that the port becomes available again.


Question

The execution seems to stall. What shall I do?



Please kill any processes that might be still running from a previous (aborted) call to tarantella.


Question


When trying to build Tarantella, CMake cannot find pybind11:

Could not find a package configuration file provided by "pybind11" with any

of the following names: [...]

What shall I do?





This error occurs when pybind11 is installed using pip.
Please instead use conda, as recommended in the installation guide.


Question

When trying to build Tarantella, CMake does not detect the Python interpreter from the
active conda environment. What shall I do?



You will need to manually add the path to the conda environment’s bin directory to your PATH.
You will also need to specify the path to the python library on the command line when configuring Tarantella:

PATH_TO_CONDA_ENV=/path/to/conda/env
export PATH=${PATH_TO_CONDA_ENV}/bin:${PATH}
cmake -DPYTHON_EXECUTABLE=${PATH_TO_CONDA_ENV}/bin/python \
      -DPYTHON_LIBRARY=${PATH_TO_CONDA_ENV}/lib ../









            

          

      

      

    

  

    
      
          
            
  
Bug Reports

To report a bug please open an issue on GitHub [https://github.com/cc-hpc-itwm/tarantella/issues].

When opening an issue, please make sure you include as much
information as possible about the issue. Please consider providing at
least the following points:



	What version of Tarantella you are using


	What linux distribution you are using (e.g., Linux Ubuntu 20.04)


	What kind of system you are experiencing the issue on (type and
number of nodes, network interconnect, etc.)


	What did you expect to see and what have you seen instead


	What exact steps are needed to reproduce the issue










Feature Requests

For contributions other than modifications to the source code, as for
example suggestions of a feature or enhancement, please open
an issue on GitHub [https://github.com/cc-hpc-itwm/tarantella/issues]
with the label Feature.

When providing a feature request, please consider providing at least
the following information:



	What is the current behavior of the software and how does the feature improve it


	Who would benefit from the feature


	Is there a relevant reference or academic paper describing the feature


	Are you willing to contribute to and/or maintain the feature











            

          

      

      

    

  

    
      
          
            
  
Contributing

Thank you for considering to contribute to Tarantella.

There are many ways to contribute to Tarantella.
This includes sharing DNN models distributed through Tarantella,
providing suggestions on improving the documentation,
as well as contributing with changes to the
Tarantella code base [https://github.com/cc-hpc-itwm/tarantella].
Even by simply providing suggestions on how we can
improve Tarantella
and help spreading the word about it are great ways to contribute
and make Tarantella better software.

If you want to contribute to Tarantella with changes to its code,
please open a pull request [https://github.com/cc-hpc-itwm/tarantella/pulls]
on GitHub.





            

          

      

      

    

  

    
      
          
            
  
Contact

In case you have any feature request,
or want to report a bug please follow
these instructions.

If you consider contributing to Tarantella, please follow
the instructions here.

If you have any further questions or comments please email to
support@tarantella.org





            

          

      

      

    

  

    
      
          
            
  
License

TARANTELLA END USER LICENSE AGREEMENT
October 21, 2020

PLEASE READ THIS LICENSE AGREEMENT CAREFULLY. BY USING THE SOFTWARE TARANTELLA YOU
ACCEPT ALL TERMS OF THE LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF
THIS LICENSE, DO NOT INSTALL, COPY, OR USE THE SOFTWARE.

1.) DEFINITIONS

1.1) LICENSOR: Fraunhofer Gesellschaft zur Foerderung der angewandten Forschung
e.V., Hansastr. 27c, 80686 Muenchen, Germany, as legal entity of Fraunhofer-
Institut fuer Techno- und Wirtschaftsmathematik, Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany.

1.2) LICENSEE: The user of Tarantella under this License Agreement.

1.3) LICENSED SOFTWARE: The Software Tarantella in source code and object code form
including all executable programs.

1.4) DOCUMENTATION: The Tarantella documentation, user's guide, e-mails and other explanatory
materials accompanying the LICENSED SOFTWARE in printed or electronic form.

2.) OWNERSHIP / INTELLECTUAL PROPERTY RIGHTS

LICENSEE acknowledges that ownership and all intellectual property rights
related to the LICENSED SOFTWARE and to the DOCUMENTATION, including patents,
copyright, company or trade secrets remain with the LICENSOR.

LICENSEE promises to keep and not to modify the copyright notices of the
LICENSOR.

3.) SCOPE OF LICENSE

3.1) Provided LICENSEE accepts all terms of this License Agreement, LICENSEE
is granted a non-exclusive, non-assignable right to use the LICENSED SOFTWARE,
which means LICENSEE may use the software for an unrestricted number of users,
as well as use the accompanying DOCUMENTATION by the actual number of users.

3.2) Without prior written consent of LICENSOR or an authorized partner,
LICENSEE may modify the source code and use the modified version of the LICENSED
SOFTWARE for internal use only.

3.2.1) LICENSEE must inform users of modified versions about the fact that the
software differs from the original version.

3.2.2) The LICENSED SOFTWARE and the modifications generated by LICENSEE shall
remain the property of LICENSOR and no rights, including but not limited to the
right to apply for industrial property rights, are granted to LICENSEE.

3.3) Without prior written consent of LICENSOR or an authorized partner,
LICENSEE may not:
- use, copy or distribute the LICENSED SOFTWARE except as provided for under
  sections 3.1 and 3.2.
- provide commercial turn-key solutions based on the LICENSED SOFTWARE or
  commercial services for the LICENSED SOFTWARE to any third party.
- rent or lease the LICENSED SOFTWARE and DOCUMENTATION to any third party.
- modify, adapt, or translate the LICENSED SOFTWARE for any third party.

3.4) The license under this License Agreement relates to the LICENSED SOFTWARE.

4.) LIMITED WARRANTY AND LIABILITY

4.1) LICENSOR confirms that the LICENSED SOFTWARE has been developed without
infringement of any rights of third parties, in particular patents, copyrights
or other intellectual property rights of third parties. Nevertheless LICENSOR
does not warrant that the use of the LICENSED SOFTWARE by LICENSEE does not
infringe any third party intellectual property rights.

4.2) LICENSEE is aware that there is a risk that the LICENSED SOFTWARE might
damage the data or the computer of the LICENSEE or even other computers on the
network in unpredictable ways. The use of the LICENSED SOFTWARE is at the
exclusive risk of the LICENSEE. LICENSOR does not offer any warranty either
expressed or implied and is not liable for any damages resulting from the use of
the LICENSED SOFTWARE or DOCUMENTATION such as, but not limited to, data loss.

4.3) Notwithstanding sections 4.1 and 4.2, the liability of the LICENSOR, its
legal representatives and employees resulting from breach of duty or tort is
restricted to damages caused intentionally or by gross negligence. In any case,
the liability under this section is limited by typical, foreseeable, direct
damages. The liability is unrestricted for damages of the body, life or health.

5.) MISCELLANEOUS

This License Agreement in English is the original one. The terms of this
Agreement can only be modified or amended in writing. In case of interpretation
controversies the terms of this Agreement shall prevail over the respective
terms of any other agreements.

This Agreement is construed under the Law of the Federal Republic of Germany.
Therefore, any and all controversies resulting out of this Agreement shall be
resolved under the Law of the Federal Republic of Germany excluding the German
International Private Law Rules. The application of the UN-Convention of the
International Sales of Goods (CISG) is explicitly excluded. Exclusive venue of
jurisdiction for both parties shall be Munich, Germany.

In case that one or several of the terms of this Agreement should be or become
invalid or unenforceable, the validity of the other terms shall remain
unaffected. In such a case, the parties shall replace the invalid or
unenforceable condition by another legally effective provision meeting the
purpose of the abolished provision to the greatest extent. The same applies in
case of a gap of regulation.
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